metabelian, supersoluble, monomial, A-group
Aliases: C12.69S32, C32⋊8(S3×C8), C33⋊12(C2×C8), C33⋊C2⋊3C8, C32⋊4C8⋊17S3, (C3×C12).164D6, C33⋊5C4.3C4, C6.7(C6.D6), C3⋊1(C12.29D6), (C32×C12).66C22, C3⋊1(C8×C3⋊S3), (C3×C3⋊C8)⋊6S3, C3⋊C8⋊6(C3⋊S3), C6.1(C4×C3⋊S3), C4.24(S3×C3⋊S3), C12.39(C2×C3⋊S3), (C32×C3⋊C8)⋊11C2, (C3×C6).45(C4×S3), C2.1(C33⋊8(C2×C4)), (C3×C32⋊4C8)⋊10C2, (C32×C6).33(C2×C4), (C2×C33⋊C2).3C4, (C4×C33⋊C2).3C2, SmallGroup(432,432)
Series: Derived ►Chief ►Lower central ►Upper central
C33 — C12.69S32 |
Generators and relations for C12.69S32
G = < a,b,c,d,e | a3=b3=c8=d3=e2=1, ab=ba, ac=ca, ad=da, eae=a-1, cbc-1=ebe=b-1, bd=db, cd=dc, ce=ec, ede=d-1 >
Subgroups: 1160 in 196 conjugacy classes, 50 normal (20 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, C6, C6, C6, C8, C2×C4, C32, C32, C32, Dic3, C12, C12, C12, D6, C2×C8, C3⋊S3, C3×C6, C3×C6, C3×C6, C3⋊C8, C3⋊C8, C24, C4×S3, C33, C3⋊Dic3, C3×C12, C3×C12, C3×C12, C2×C3⋊S3, S3×C8, C33⋊C2, C32×C6, C3×C3⋊C8, C3×C3⋊C8, C32⋊4C8, C3×C24, C4×C3⋊S3, C33⋊5C4, C32×C12, C2×C33⋊C2, C12.29D6, C8×C3⋊S3, C32×C3⋊C8, C3×C32⋊4C8, C4×C33⋊C2, C12.69S32
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, D6, C2×C8, C3⋊S3, C4×S3, S32, C2×C3⋊S3, S3×C8, C6.D6, C4×C3⋊S3, S3×C3⋊S3, C12.29D6, C8×C3⋊S3, C33⋊8(C2×C4), C12.69S32
(1 24 48)(2 17 41)(3 18 42)(4 19 43)(5 20 44)(6 21 45)(7 22 46)(8 23 47)(9 25 64)(10 26 57)(11 27 58)(12 28 59)(13 29 60)(14 30 61)(15 31 62)(16 32 63)(33 71 51)(34 72 52)(35 65 53)(36 66 54)(37 67 55)(38 68 56)(39 69 49)(40 70 50)
(1 27 40)(2 33 28)(3 29 34)(4 35 30)(5 31 36)(6 37 32)(7 25 38)(8 39 26)(9 56 46)(10 47 49)(11 50 48)(12 41 51)(13 52 42)(14 43 53)(15 54 44)(16 45 55)(17 71 59)(18 60 72)(19 65 61)(20 62 66)(21 67 63)(22 64 68)(23 69 57)(24 58 70)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(1 70 11)(2 71 12)(3 72 13)(4 65 14)(5 66 15)(6 67 16)(7 68 9)(8 69 10)(17 51 28)(18 52 29)(19 53 30)(20 54 31)(21 55 32)(22 56 25)(23 49 26)(24 50 27)(33 59 41)(34 60 42)(35 61 43)(36 62 44)(37 63 45)(38 64 46)(39 57 47)(40 58 48)
(9 68)(10 69)(11 70)(12 71)(13 72)(14 65)(15 66)(16 67)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)(25 38)(26 39)(27 40)(28 33)(29 34)(30 35)(31 36)(32 37)(49 57)(50 58)(51 59)(52 60)(53 61)(54 62)(55 63)(56 64)
G:=sub<Sym(72)| (1,24,48)(2,17,41)(3,18,42)(4,19,43)(5,20,44)(6,21,45)(7,22,46)(8,23,47)(9,25,64)(10,26,57)(11,27,58)(12,28,59)(13,29,60)(14,30,61)(15,31,62)(16,32,63)(33,71,51)(34,72,52)(35,65,53)(36,66,54)(37,67,55)(38,68,56)(39,69,49)(40,70,50), (1,27,40)(2,33,28)(3,29,34)(4,35,30)(5,31,36)(6,37,32)(7,25,38)(8,39,26)(9,56,46)(10,47,49)(11,50,48)(12,41,51)(13,52,42)(14,43,53)(15,54,44)(16,45,55)(17,71,59)(18,60,72)(19,65,61)(20,62,66)(21,67,63)(22,64,68)(23,69,57)(24,58,70), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (1,70,11)(2,71,12)(3,72,13)(4,65,14)(5,66,15)(6,67,16)(7,68,9)(8,69,10)(17,51,28)(18,52,29)(19,53,30)(20,54,31)(21,55,32)(22,56,25)(23,49,26)(24,50,27)(33,59,41)(34,60,42)(35,61,43)(36,62,44)(37,63,45)(38,64,46)(39,57,47)(40,58,48), (9,68)(10,69)(11,70)(12,71)(13,72)(14,65)(15,66)(16,67)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64)>;
G:=Group( (1,24,48)(2,17,41)(3,18,42)(4,19,43)(5,20,44)(6,21,45)(7,22,46)(8,23,47)(9,25,64)(10,26,57)(11,27,58)(12,28,59)(13,29,60)(14,30,61)(15,31,62)(16,32,63)(33,71,51)(34,72,52)(35,65,53)(36,66,54)(37,67,55)(38,68,56)(39,69,49)(40,70,50), (1,27,40)(2,33,28)(3,29,34)(4,35,30)(5,31,36)(6,37,32)(7,25,38)(8,39,26)(9,56,46)(10,47,49)(11,50,48)(12,41,51)(13,52,42)(14,43,53)(15,54,44)(16,45,55)(17,71,59)(18,60,72)(19,65,61)(20,62,66)(21,67,63)(22,64,68)(23,69,57)(24,58,70), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (1,70,11)(2,71,12)(3,72,13)(4,65,14)(5,66,15)(6,67,16)(7,68,9)(8,69,10)(17,51,28)(18,52,29)(19,53,30)(20,54,31)(21,55,32)(22,56,25)(23,49,26)(24,50,27)(33,59,41)(34,60,42)(35,61,43)(36,62,44)(37,63,45)(38,64,46)(39,57,47)(40,58,48), (9,68)(10,69)(11,70)(12,71)(13,72)(14,65)(15,66)(16,67)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64) );
G=PermutationGroup([[(1,24,48),(2,17,41),(3,18,42),(4,19,43),(5,20,44),(6,21,45),(7,22,46),(8,23,47),(9,25,64),(10,26,57),(11,27,58),(12,28,59),(13,29,60),(14,30,61),(15,31,62),(16,32,63),(33,71,51),(34,72,52),(35,65,53),(36,66,54),(37,67,55),(38,68,56),(39,69,49),(40,70,50)], [(1,27,40),(2,33,28),(3,29,34),(4,35,30),(5,31,36),(6,37,32),(7,25,38),(8,39,26),(9,56,46),(10,47,49),(11,50,48),(12,41,51),(13,52,42),(14,43,53),(15,54,44),(16,45,55),(17,71,59),(18,60,72),(19,65,61),(20,62,66),(21,67,63),(22,64,68),(23,69,57),(24,58,70)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(1,70,11),(2,71,12),(3,72,13),(4,65,14),(5,66,15),(6,67,16),(7,68,9),(8,69,10),(17,51,28),(18,52,29),(19,53,30),(20,54,31),(21,55,32),(22,56,25),(23,49,26),(24,50,27),(33,59,41),(34,60,42),(35,61,43),(36,62,44),(37,63,45),(38,64,46),(39,57,47),(40,58,48)], [(9,68),(10,69),(11,70),(12,71),(13,72),(14,65),(15,66),(16,67),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48),(25,38),(26,39),(27,40),(28,33),(29,34),(30,35),(31,36),(32,37),(49,57),(50,58),(51,59),(52,60),(53,61),(54,62),(55,63),(56,64)]])
72 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | ··· | 3E | 3F | 3G | 3H | 3I | 4A | 4B | 4C | 4D | 6A | ··· | 6E | 6F | 6G | 6H | 6I | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 12A | ··· | 12J | 12K | ··· | 12R | 24A | ··· | 24P | 24Q | 24R | 24S | 24T |
order | 1 | 2 | 2 | 2 | 3 | ··· | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 12 | ··· | 12 | 12 | ··· | 12 | 24 | ··· | 24 | 24 | 24 | 24 | 24 |
size | 1 | 1 | 27 | 27 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 1 | 1 | 27 | 27 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 3 | 3 | 3 | 3 | 9 | 9 | 9 | 9 | 2 | ··· | 2 | 4 | ··· | 4 | 6 | ··· | 6 | 18 | 18 | 18 | 18 |
72 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C8 | S3 | S3 | D6 | C4×S3 | S3×C8 | S32 | C6.D6 | C12.29D6 |
kernel | C12.69S32 | C32×C3⋊C8 | C3×C32⋊4C8 | C4×C33⋊C2 | C33⋊5C4 | C2×C33⋊C2 | C33⋊C2 | C3×C3⋊C8 | C32⋊4C8 | C3×C12 | C3×C6 | C32 | C12 | C6 | C3 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 4 | 1 | 5 | 10 | 20 | 4 | 4 | 8 |
Matrix representation of C12.69S32 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 0 | 1 | 72 |
22 | 0 | 0 | 0 | 0 | 0 |
0 | 22 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
72 | 72 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
72 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72],[22,0,0,0,0,0,0,22,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[72,1,0,0,0,0,72,0,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C12.69S32 in GAP, Magma, Sage, TeX
C_{12}._{69}S_3^2
% in TeX
G:=Group("C12.69S3^2");
// GroupNames label
G:=SmallGroup(432,432);
// by ID
G=gap.SmallGroup(432,432);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,28,36,58,571,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^8=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,c*b*c^-1=e*b*e=b^-1,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations